CBLS
Documentation for CBLS.
CBLS.AllDifferentCBLS.AllEqualCBLS.AllEqualParamCBLS.AlwaysTrueCBLS.DiscreteSetCBLS.DistDifferentCBLS.EqCBLS.ErrorCBLS.LessThanParamCBLS.MOIAllDifferentCBLS.MOIAllEqualCBLS.MOIAllEqualParamCBLS.MOIAlwaysTrueCBLS.MOIDistDifferentCBLS.MOIEqCBLS.MOIErrorCBLS.MOILessThanParamCBLS.MOIMinusEqualParamCBLS.MOIOrderedCBLS.MOIPredicateCBLS.MOISequentialTasksCBLS.MOISumEqualParamCBLS.MinusEqualParamCBLS.OptimizerCBLS.OptimizerCBLS.OrderedCBLS.PredicateCBLS.ScalarFunctionCBLS.SequentialTasksCBLS.SumEqualParamBase.copyBase.copyJuMP.build_variableMathOptInterface.Utilities.supports_default_copy_toMathOptInterface.add_constraintMathOptInterface.add_constraintMathOptInterface.add_variableMathOptInterface.empty!MathOptInterface.getMathOptInterface.is_emptyMathOptInterface.optimize!MathOptInterface.setMathOptInterface.setMathOptInterface.setMathOptInterface.supports_constraint
CBLS.AllDifferent — TypeGlobal constraint ensuring that all the values of a given configuration are unique.
@constraint(model, X in AllDifferent())CBLS.AllEqual — TypeGlobal constraint ensuring that all the values of X are all equal.
@constraint(model, X in AllEqual())CBLS.AllEqualParam — TypeGlobal constraint ensuring that all the values of X are all equal to a given parameter param.
@constraint(model, X in AllEqualParam(param))CBLS.AlwaysTrue — TypeAlways return true. Mainly used for testing purpose.
@constraint(model, X in AlwaysTrue())CBLS.DiscreteSet — TypeDiscreteSet(values)CBLS.DistDifferent — TypeLocal constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).
@constraint(model, X in DistDifferent())CBLS.Eq — TypeEquality between two variables.
@constraint(model, X in Eq())CBLS.Error — TypeError{F <: Function} <: JuMP.AbstractVectorSetThe solver will compute a straightforward error function based on the concept. To run the solver efficiently, it is possible to provide an error function err instead of concept. err must return a nonnegative real number.
@constraint(model, X in Error(err))CBLS.LessThanParam — TypeConstraint ensuring that the value of x is less than a given parameter param.
@constraint(model, x in LessThanParam(param))CBLS.MOIAllDifferent — TypeMOIAllDifferent <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOIAllEqual — TypeMOIAllEqual <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOIAllEqualParam — TypeMOIAllEqualParam{T <: Number} <: MOI.AbstractVectorSetDOCSTRING
Arguments:
param::T: DESCRIPTIONdimension::Int: DESCRIPTIONMOIAllEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
CBLS.MOIAlwaysTrue — TypeMOIAlwaysTrue <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOIDistDifferent — TypeMOIDistDifferent <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOIEq — TypeMOIEq <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOIError — TypeMOIError{F <: Function} <: MOI.AbstractVectorSetDOCSTRING
Arguments:
f::F: DESCRIPTIONdimension::Int: DESCRIPTIONMOIError(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION
CBLS.MOILessThanParam — TypeMOILessThanParam{T <: Number} <: MOI.AbstractVectorSetDOCSTRING
Arguments:
param::T: DESCRIPTIONdimension::Int: DESCRIPTIONMOILessThanParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
CBLS.MOIMinusEqualParam — TypeMOIMinusEqualParam{T <: Number} <: MOI.AbstractVectorSetDOCSTRING
Arguments:
param::T: DESCRIPTIONdimension::Int: DESCRIPTIONMOIMinusEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
CBLS.MOIOrdered — TypeMOIOrdered <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOIPredicate — TypeMOIPredicate{F <: Function} <: MOI.AbstractVectorSetDOCSTRING
Arguments:
f::F: DESCRIPTIONdimension::Int: DESCRIPTIONMOIPredicate(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION
CBLS.MOISequentialTasks — TypeMOISequentialTasks <: MOI.AbstractVectorSetDOCSTRING
CBLS.MOISumEqualParam — TypeMOISumEqualParam{T <: Number} <: MOI.AbstractVectorSetDOCSTRING
Arguments:
param::T: DESCRIPTIONdimension::Int: DESCRIPTIONMOISumEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
CBLS.MinusEqualParam — TypeConstraint ensuring that the value of x is less than a given parameter param.
@constraint(model, x in MinusEqualParam(param))CBLS.Optimizer — TypeOptimizer <: MOI.AbstractOptimizerDOCSTRING
Arguments:
solver::Solver: DESCRIPTIONstatus::MOI.TerminationStatusCode: DESCRIPTIONoptions::Options: DESCRIPTION
CBLS.Optimizer — TypeOptimizer(model = Model(); options = Options())DOCSTRING
CBLS.Ordered — TypeGlobal constraint ensuring that all the values of x are ordered.
@constraint(model, X in Ordered())CBLS.Predicate — TypePredicate{F <: Function} <: JuMP.AbstractVectorSetAssuming X is a (collection of) variables, concept a boolean function over X, and that a model is defined. In JuMP syntax we can create a constraint based on concept as follows.
@constraint(model, X in Predicate(concept))CBLS.ScalarFunction — TypeScalarFunction{F <: Function, V <: Union{Nothing, VOV}} <: MOI.AbstractScalarFunctionA container to express any function with real value in JuMP syntax. Used with the @objective macro.
Arguments:
f::F: function to be applied toXX::V: a subset of the variables of the model.
Given a model, and some (collection of) variables X to optimize. an objective function f can be added as follows. Note that only Min for minimization us currently defined. Max will come soon.
# Applies to all variables in order of insertion.
# Recommended only when the function argument order does not matter.
@objective(model, ScalarFunction(f))
# Generic use
@objective(model, ScalarFunction(f, X))CBLS.SequentialTasks — TypeLocal constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).
@constraint(model, X in SequentialTasks())CBLS.SumEqualParam — TypeGlobal constraint ensuring that the sum of the values of X is equal to a given parameter param.
@constraint(model, X in SumEqualParam(param))Base.copy — MethodBase.copy(set::MOIError) = beginDOCSTRING
Base.copy — MethodBase.copy(set::DiscreteSet) = beginDOCSTRING
JuMP.build_variable — MethodJuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSetDOCSTRING
Arguments:
- ``: DESCRIPTION
info: DESCRIPTIONset: DESCRIPTION
MathOptInterface.Utilities.supports_default_copy_to — MethodCopy constructor for the optimizer
MathOptInterface.add_constraint — MethodMOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)DOCSTRING
Arguments:
optimizer: DESCRIPTIONvars: DESCRIPTIONset: DESCRIPTION
MathOptInterface.add_constraint — MethodMOI.add_constraint(optimizer::Optimizer, v::SVF, set::DiscreteSet{T}) where T <: NumberDOCSTRING
Arguments:
optimizer: DESCRIPTIONv: DESCRIPTIONset: DESCRIPTION
MathOptInterface.add_variable — MethodMOI.add_variable(model::Optimizer) = beginDOCSTRING
MathOptInterface.empty! — MethodMOI.empty!(opt) = beginDOCSTRING
MathOptInterface.get — MethodMOI.get(::Optimizer, ::MOI.SolverName) = beginDOCSTRING
MathOptInterface.is_empty — MethodMOI.is_empty(model::Optimizer) = beginDOCSTRING
MathOptInterface.optimize! — MethodMOI.optimize!(model::Optimizer)MathOptInterface.set — FunctionMOI.set(::Optimizer, ::MOI.Silent, bool = true) = beginDOCSTRING
Arguments:
- ``: DESCRIPTION
- ``: DESCRIPTION
bool: DESCRIPTION
MathOptInterface.set — MethodMOI.set(model::Optimizer, p::MOI.RawParameter, value)Set a RawParameter to value
MathOptInterface.set — MethodMOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})Set the time limit
MathOptInterface.supports_constraint — MethodMOI.supports_constraint(::Optimizer, ::Type{VOV}, ::Type{MOIError}) = beginDOCSTRING
Arguments:
- ``: DESCRIPTION
- ``: DESCRIPTION
- ``: DESCRIPTION