CBLS

Documentation for CBLS.

CBLS.AllDifferentType

Global constraint ensuring that all the values of a given configuration are unique.

@constraint(model, X in AllDifferent())
source
CBLS.AllEqualType

Global constraint ensuring that all the values of X are all equal.

@constraint(model, X in AllEqual())
source
CBLS.AllEqualParamType

Global constraint ensuring that all the values of X are all equal to a given parameter param.

@constraint(model, X in AllEqualParam(param))
source
CBLS.AlwaysTrueType

Always return true. Mainly used for testing purpose.

@constraint(model, X in AlwaysTrue())
source
CBLS.DistDifferentType

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

@constraint(model, X in DistDifferent())
source
CBLS.EqType

Equality between two variables.

@constraint(model, X in Eq())
source
CBLS.ErrorType
Error{F <: Function} <: JuMP.AbstractVectorSet

The solver will compute a straightforward error function based on the concept. To run the solver efficiently, it is possible to provide an error function err instead of concept. err must return a nonnegative real number.

@constraint(model, X in Error(err))
source
CBLS.LessThanParamType

Constraint ensuring that the value of x is less than a given parameter param.

@constraint(model, x in LessThanParam(param))
source
CBLS.MOIAllEqualParamType
MOIAllEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION
  • dimension::Int: DESCRIPTION
  • MOIAllEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
source
CBLS.MOIErrorType
MOIError{F <: Function} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • f::F: DESCRIPTION
  • dimension::Int: DESCRIPTION
  • MOIError(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION
source
CBLS.MOILessThanParamType
MOILessThanParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION
  • dimension::Int: DESCRIPTION
  • MOILessThanParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
source
CBLS.MOIMinusEqualParamType
MOIMinusEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION
  • dimension::Int: DESCRIPTION
  • MOIMinusEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
source
CBLS.MOIPredicateType
MOIPredicate{F <: Function} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • f::F: DESCRIPTION
  • dimension::Int: DESCRIPTION
  • MOIPredicate(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION
source
CBLS.MOISumEqualParamType
MOISumEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION
  • dimension::Int: DESCRIPTION
  • MOISumEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION
source
CBLS.MinusEqualParamType

Constraint ensuring that the value of x is less than a given parameter param.

@constraint(model, x in MinusEqualParam(param))
source
CBLS.OptimizerType
Optimizer <: MOI.AbstractOptimizer

DOCSTRING

Arguments:

  • solver::Solver: DESCRIPTION
  • status::MOI.TerminationStatusCode: DESCRIPTION
  • options::Options: DESCRIPTION
source
CBLS.OrderedType

Global constraint ensuring that all the values of x are ordered.

@constraint(model, X in Ordered())
source
CBLS.PredicateType
Predicate{F <: Function} <: JuMP.AbstractVectorSet

Assuming X is a (collection of) variables, concept a boolean function over X, and that a model is defined. In JuMP syntax we can create a constraint based on concept as follows.

@constraint(model, X in Predicate(concept))
source
CBLS.ScalarFunctionType
ScalarFunction{F <: Function, V <: Union{Nothing, VOV}} <: MOI.AbstractScalarFunction

A container to express any function with real value in JuMP syntax. Used with the @objective macro.

Arguments:

  • f::F: function to be applied to X
  • X::V: a subset of the variables of the model.

Given a model, and some (collection of) variables X to optimize. an objective function f can be added as follows. Note that only Min for minimization us currently defined. Max will come soon.

# Applies to all variables in order of insertion.
# Recommended only when the function argument order does not matter.
@objective(model, ScalarFunction(f))

# Generic use
@objective(model, ScalarFunction(f, X))
source
CBLS.SequentialTasksType

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

@constraint(model, X in SequentialTasks())
source
CBLS.SumEqualParamType

Global constraint ensuring that the sum of the values of X is equal to a given parameter param.

@constraint(model, X in SumEqualParam(param))
source
JuMP.build_variableMethod
JuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSet

DOCSTRING

Arguments:

  • ``: DESCRIPTION
  • info: DESCRIPTION
  • set: DESCRIPTION
source
MathOptInterface.add_constraintMethod
MOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION
  • vars: DESCRIPTION
  • set: DESCRIPTION
source
MathOptInterface.add_constraintMethod
MOI.add_constraint(optimizer::Optimizer, v::SVF, set::DiscreteSet{T}) where T <: Number

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION
  • v: DESCRIPTION
  • set: DESCRIPTION
source
MathOptInterface.setFunction
MOI.set(::Optimizer, ::MOI.Silent, bool = true) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION
  • ``: DESCRIPTION
  • bool: DESCRIPTION
source
MathOptInterface.setMethod
MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})

Set the time limit

source