CBLS
Documentation for CBLS.
CBLS.AllDifferent
CBLS.AllEqual
CBLS.AllEqualParam
CBLS.AlwaysTrue
CBLS.DiscreteSet
CBLS.DistDifferent
CBLS.Eq
CBLS.Error
CBLS.LessThanParam
CBLS.MOIAllDifferent
CBLS.MOIAllEqual
CBLS.MOIAllEqualParam
CBLS.MOIAlwaysTrue
CBLS.MOIDistDifferent
CBLS.MOIEq
CBLS.MOIError
CBLS.MOILessThanParam
CBLS.MOIMinusEqualParam
CBLS.MOIOrdered
CBLS.MOIPredicate
CBLS.MOISequentialTasks
CBLS.MOISumEqualParam
CBLS.MinusEqualParam
CBLS.Optimizer
CBLS.Optimizer
CBLS.Ordered
CBLS.Predicate
CBLS.ScalarFunction
CBLS.SequentialTasks
CBLS.SumEqualParam
Base.copy
Base.copy
JuMP.build_variable
MathOptInterface.Utilities.supports_default_copy_to
MathOptInterface.add_constraint
MathOptInterface.add_constraint
MathOptInterface.add_variable
MathOptInterface.empty!
MathOptInterface.get
MathOptInterface.is_empty
MathOptInterface.optimize!
MathOptInterface.set
MathOptInterface.set
MathOptInterface.set
MathOptInterface.supports_constraint
CBLS.AllDifferent
— TypeGlobal constraint ensuring that all the values of a given configuration are unique.
@constraint(model, X in AllDifferent())
CBLS.AllEqual
— TypeGlobal constraint ensuring that all the values of X
are all equal.
@constraint(model, X in AllEqual())
CBLS.AllEqualParam
— TypeGlobal constraint ensuring that all the values of X
are all equal to a given parameter param
.
@constraint(model, X in AllEqualParam(param))
CBLS.AlwaysTrue
— TypeAlways return true
. Mainly used for testing purpose.
@constraint(model, X in AlwaysTrue())
CBLS.DiscreteSet
— TypeDiscreteSet(values)
CBLS.DistDifferent
— TypeLocal constraint ensuring that, given a vector X
of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|)
.
@constraint(model, X in DistDifferent())
CBLS.Eq
— TypeEquality between two variables.
@constraint(model, X in Eq())
CBLS.Error
— TypeError{F <: Function} <: JuMP.AbstractVectorSet
The solver will compute a straightforward error function based on the concept
. To run the solver efficiently, it is possible to provide an error function err
instead of concept
. err
must return a nonnegative real number.
@constraint(model, X in Error(err))
CBLS.LessThanParam
— TypeConstraint ensuring that the value of x
is less than a given parameter param
.
@constraint(model, x in LessThanParam(param))
CBLS.MOIAllDifferent
— TypeMOIAllDifferent <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOIAllEqual
— TypeMOIAllEqual <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOIAllEqualParam
— TypeMOIAllEqualParam{T <: Number} <: MOI.AbstractVectorSet
DOCSTRING
Arguments:
param::T
: DESCRIPTIONdimension::Int
: DESCRIPTIONMOIAllEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end
: DESCRIPTION
CBLS.MOIAlwaysTrue
— TypeMOIAlwaysTrue <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOIDistDifferent
— TypeMOIDistDifferent <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOIEq
— TypeMOIEq <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOIError
— TypeMOIError{F <: Function} <: MOI.AbstractVectorSet
DOCSTRING
Arguments:
f::F
: DESCRIPTIONdimension::Int
: DESCRIPTIONMOIError(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end
: DESCRIPTION
CBLS.MOILessThanParam
— TypeMOILessThanParam{T <: Number} <: MOI.AbstractVectorSet
DOCSTRING
Arguments:
param::T
: DESCRIPTIONdimension::Int
: DESCRIPTIONMOILessThanParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end
: DESCRIPTION
CBLS.MOIMinusEqualParam
— TypeMOIMinusEqualParam{T <: Number} <: MOI.AbstractVectorSet
DOCSTRING
Arguments:
param::T
: DESCRIPTIONdimension::Int
: DESCRIPTIONMOIMinusEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end
: DESCRIPTION
CBLS.MOIOrdered
— TypeMOIOrdered <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOIPredicate
— TypeMOIPredicate{F <: Function} <: MOI.AbstractVectorSet
DOCSTRING
Arguments:
f::F
: DESCRIPTIONdimension::Int
: DESCRIPTIONMOIPredicate(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end
: DESCRIPTION
CBLS.MOISequentialTasks
— TypeMOISequentialTasks <: MOI.AbstractVectorSet
DOCSTRING
CBLS.MOISumEqualParam
— TypeMOISumEqualParam{T <: Number} <: MOI.AbstractVectorSet
DOCSTRING
Arguments:
param::T
: DESCRIPTIONdimension::Int
: DESCRIPTIONMOISumEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end
: DESCRIPTION
CBLS.MinusEqualParam
— TypeConstraint ensuring that the value of x
is less than a given parameter param
.
@constraint(model, x in MinusEqualParam(param))
CBLS.Optimizer
— TypeOptimizer <: MOI.AbstractOptimizer
DOCSTRING
Arguments:
solver::Solver
: DESCRIPTIONstatus::MOI.TerminationStatusCode
: DESCRIPTIONoptions::Options
: DESCRIPTION
CBLS.Optimizer
— TypeOptimizer(model = Model(); options = Options())
DOCSTRING
CBLS.Ordered
— TypeGlobal constraint ensuring that all the values of x
are ordered.
@constraint(model, X in Ordered())
CBLS.Predicate
— TypePredicate{F <: Function} <: JuMP.AbstractVectorSet
Assuming X
is a (collection of) variables, concept
a boolean function over X
, and that a model
is defined. In JuMP
syntax we can create a constraint based on concept
as follows.
@constraint(model, X in Predicate(concept))
CBLS.ScalarFunction
— TypeScalarFunction{F <: Function, V <: Union{Nothing, VOV}} <: MOI.AbstractScalarFunction
A container to express any function with real value in JuMP syntax. Used with the @objective
macro.
Arguments:
f::F
: function to be applied toX
X::V
: a subset of the variables of the model.
Given a model
, and some (collection of) variables X
to optimize. an objective function f
can be added as follows. Note that only Min
for minimization us currently defined. Max
will come soon.
# Applies to all variables in order of insertion.
# Recommended only when the function argument order does not matter.
@objective(model, ScalarFunction(f))
# Generic use
@objective(model, ScalarFunction(f, X))
CBLS.SequentialTasks
— TypeLocal constraint ensuring that, given a vector X
of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|)
.
@constraint(model, X in SequentialTasks())
CBLS.SumEqualParam
— TypeGlobal constraint ensuring that the sum of the values of X
is equal to a given parameter param
.
@constraint(model, X in SumEqualParam(param))
Base.copy
— MethodBase.copy(set::MOIError) = begin
DOCSTRING
Base.copy
— MethodBase.copy(set::DiscreteSet) = begin
DOCSTRING
JuMP.build_variable
— MethodJuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSet
DOCSTRING
Arguments:
- ``: DESCRIPTION
info
: DESCRIPTIONset
: DESCRIPTION
MathOptInterface.Utilities.supports_default_copy_to
— MethodCopy constructor for the optimizer
MathOptInterface.add_constraint
— MethodMOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)
DOCSTRING
Arguments:
optimizer
: DESCRIPTIONvars
: DESCRIPTIONset
: DESCRIPTION
MathOptInterface.add_constraint
— MethodMOI.add_constraint(optimizer::Optimizer, v::SVF, set::DiscreteSet{T}) where T <: Number
DOCSTRING
Arguments:
optimizer
: DESCRIPTIONv
: DESCRIPTIONset
: DESCRIPTION
MathOptInterface.add_variable
— MethodMOI.add_variable(model::Optimizer) = begin
DOCSTRING
MathOptInterface.empty!
— MethodMOI.empty!(opt) = begin
DOCSTRING
MathOptInterface.get
— MethodMOI.get(::Optimizer, ::MOI.SolverName) = begin
DOCSTRING
MathOptInterface.is_empty
— MethodMOI.is_empty(model::Optimizer) = begin
DOCSTRING
MathOptInterface.optimize!
— MethodMOI.optimize!(model::Optimizer)
MathOptInterface.set
— FunctionMOI.set(::Optimizer, ::MOI.Silent, bool = true) = begin
DOCSTRING
Arguments:
- ``: DESCRIPTION
- ``: DESCRIPTION
bool
: DESCRIPTION
MathOptInterface.set
— MethodMOI.set(model::Optimizer, p::MOI.RawParameter, value)
Set a RawParameter to value
MathOptInterface.set
— MethodMOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})
Set the time limit
MathOptInterface.supports_constraint
— MethodMOI.supports_constraint(::Optimizer, ::Type{VOV}, ::Type{MOIError}) = begin
DOCSTRING
Arguments:
- ``: DESCRIPTION
- ``: DESCRIPTION
- ``: DESCRIPTION